Exercise 14

Convert each of the following Volterra integral equation in 9-16 to an equivalent IVP:

$$
u(x)=2+\sinh x+\int_{0}^{x}(x-t)^{2} u(t) d t
$$

Solution

Differentiate both sides with respect to x.

$$
u^{\prime}(x)=\cosh x+\frac{d}{d x} \int_{0}^{x}(x-t)^{2} u(t) d t
$$

Use the Leibnitz rule to differentiate the integral.

$$
\begin{aligned}
& =\cosh x+\left[\int_{0}^{x} \frac{\partial}{\partial x}(x-t)^{2} u(t) d t+(0)^{2} u(x) \cdot 1-(x)^{2} u(0) \cdot 0\right] \\
& =\cosh x+\left[\int_{0}^{x} 2(x-t) u(t) d t\right] \\
& =\cosh x+2 \int_{0}^{x}(x-t) u(t) d t
\end{aligned}
$$

Differentiate both sides with respect to x again.

$$
\begin{aligned}
u^{\prime \prime}(x) & =\sinh x+2 \frac{d}{d x} \int_{0}^{x}(x-t) u(t) d t \\
& =\sinh x+2\left[\int_{0}^{x} \frac{\partial}{\partial x}(x-t) u(t) d t+(0) u(x) \cdot 1-(x) u(0) \cdot 0\right] \\
& =\sinh x+2 \int_{0}^{x} u(t) d t
\end{aligned}
$$

Differentiate both sides with respect to x again.

$$
\begin{aligned}
u^{\prime \prime \prime}(x) & =\cosh x+2 \frac{d}{d x} \int_{0}^{x} u(t) d t \\
= & \cosh x+2 u(x) \\
& u^{\prime \prime \prime}-2 u=\cosh x
\end{aligned}
$$

The initial conditions to this ODE are found by plugging in $x=0$ into the original integral equation,

$$
u(0)=2+\sinh 0+\int_{0}^{0}(0-t)^{2} u(t) d t=2
$$

and the formula for u^{\prime},

$$
u^{\prime}(0)=\cosh 0+2 \int_{0}^{0}(0-t) u(t) d t=1,
$$

and the formula for $u^{\prime \prime}$,

$$
u^{\prime \prime}(0)=\sinh 0+2 \int_{0}^{0} u(t) d t=0
$$

Therefore, the equivalent IVP is

$$
u^{\prime \prime \prime}-2 u=\cosh x, u(0)=2, u^{\prime}(0)=1, u^{\prime \prime}(0)=0 .
$$

